Assignment 1 Solution

1. Informed Search (4 points)
1(a) (1 point)
Consider H; = Misplaced Tile Heuristic and H> = Manhattan Distance Heuristic.
Acceptable “proofs” should have that A is better than H; because H: is closer to the
correct cost, i.e., H*(n) > Hx(n) > H(n), where H*(n) is the real cost. This implies that the
time taken to do search should be lower. In other words, H: provides a tighter lower
bound.
1(b) (1 point)
For a heuristic to be consistent, it must comply with the following:
h(n) < c(n,n') + h(n") Va,n'
Proposition: A, is consistent
Proof: 3 cases need to be addressed:
1 - After a move, the SAME NUMBER of tiles is out of position:
In this case, c(n,n") =1 and H(n) = H(n') . So, h(n) < c(n,n") + h(n').
2 - After a move, one LESS tile is out of position:
In this case, c(n,n") =1 and H(n) = H(n") +1. So, h(n) < c(n,n’) + h(n').
3 - After a move, one MORE tile is out of position:
In this case, c(n,n") =1 and H(n) = H(n") —1. So, h(n) < c(n,n’) + h(n').
These 3 cases show that no matter the move, we will have i(n) < c(n,n") + h(n"), which
means that after each move the f-cost increases or stays the same. Therefore, the f-
cost increases monotonically.
Proposition: H: is consistent
The proof for this proposition is almost identical to the proof given above, with the

exception that the first case is not possible anymore. When the blank moves, H:'s value
is either -1 or +7 from n to n'. Note: An answer like this one was given full marks.



2(a) (1 point)

Time complexity: O(b9); in the worst case it may still take exponential time since all
nodes up to a certain f limit need to be expanded, which takes exponential time with
respect the depth of the shallowest solution.

Space complexity: O(bd): the algorithm needs to store all nodes in a path with all
children (at most b) of each node on the path.

For full marks, the complexity in big O notation is required (as opposed to simply stating
exponential and linear complexity).

2(b) (0.5 point)

IDA* is complete because the algorithm uses a DFS scheme to visit exhaustively the
tree of solutions while increasing continually the fringe depth limit after each iteration,
until the goal is reached. This limit stops the search from going down the tree
indefinitely. As a result admissibility and consistency are not needed for completeness.

Note 1: The fact that the fringe ceiling is derived from an f-cost value doesn't change
this assumption as long as the branching factor is finite, and that the costs are positive
(greater than some constant).

Note 2: This is only true if we assume the computer has enough resources available
(memory).

2(c) (0.5 point)

IDA* is optimal because it uses a DFS scheme similar to IDS, and IDS is optimal. Every
time IDA* chooses a new cutoff value, it chooses a value that is larger than its previous
cutoff, but that is the smallest value among all the f-cost values encountered so far.
Hence, the optimality relies upon the consistency of the heuristic in use, which
guarantees that the f-costs are monotonically increasing by some 'optimistic' amount.
Note that admissibility is not sufficient for graphs. We need consistency of the heuristic
to ensure optimality of IDA*.

2. Constraint Satisfaction (6 points)
1. (1 point)

Example of a possible solution:

Variables: Vi ,....Vs

Domain: {1,...,9}

Constraints:
e Each row contains integers from 1 to 9 without duplications.



e Each column contains integers from 1 to 9 without duplications.
e Each box contains integers from 1 to 9 without duplications.

2. (5 points)

Example of an acceptable solution for time and number of steps (nodes):

Nodes
BT BT+FC BT+FC+H
Mean SD| Mean SD | Mean SD
Easy 676,505 301,959 3,425 2,213 51 4
Medium 1,641,523 981,547 3,207 2,283 95 12
Hard 228,613,111 | 117,327,442 | 219,157 176,555 95 12
Evil 679,017,025 | 374,752,909 | 420,324 306,087 232 154
Time
(seconds)
BT BT+FC BT+FC+H
Mean SD| Mean SD | Mean SD
Easy 7.35 3.31 0.48 0.32 0.02 | 0.00
Medium 18.87 11.35 0.47 0.35 0.04 | 0.01
Hard 2,875.13 1,475.58 35.17 28.33 0.04 | 0.01
Evil 7.940.85 4,340.72 69.00 51.30 0.10 | 0.07

Note: Clearly, the running times depend on the implementation. Those results are
based on a Python implementation where averages and standard deviations are
computed based on a sample of 50 runs.

Explanation of the results: As expected, BT+FC+H expands fewer nodes and takes
less time than BT+FC. Similarly, BT+FC expands fewer nodes and takes less time than
BT. Note however, that the time per expanded node is greater for BT+FC+H than
BT+FC due to the overhead introduced by the heuristics. Similarly, the time per
expanded node is greater for BT+FC than BT due to the overhead introduced by
forward checking. The results clearly show a dramatic reduction in time and expanded
nodes as forward checking and the heuristics are incorporated.



